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Abstract 

An exact calculation of the probability density func- 
tion (p.d.f.) of IEI, the magnitude of the normalized 
structure factor, can be developed in terms of Fourier 
and Fourier-Bessel series whose coefficients can be 
expressed in terms of the characteristic function. This 
ar  :cle provides the formulae for atomic contributions 
to such characteristic functions. The results presented 
in this study are applicable to all the plane groups 
and to 206 three-dimensional space groups. Only the 
spacegroups  isomorphous to the cubic point groups 
432, 43m and m3m were omitted due to the com- 
plexity of the resulting expressions and the small 
deviations of the corresponding densities from the 
central-limit-theorem approximation, which have 
been observed in simulations for extreme atomic 
heterogeneities. Representative derivations illustrat- 
ing the problems and techniques of their solution are 
provided. All the theoretical results have been com- 
puted numerically and compared with simulated dis- 
tributions. Some results of these computations are 
illustrated in the accompanying paper, Part VII of 
this series [Rabinovich, Shmueli, Stein, Shashua & 
Weiss (1991). Acta Cryst. A47, 336-340]. 

Introduction 

The existing probability density functions (p.d.f.'s) 
and other statistics of the magnitude I EI of the nor- 
malized structure factor, which depend on the atomic 
composition and the space-group symmetry, can be 
classified in two groups. The older one comprises 
approximate Gram-Char l ier  and Edgeworth ex- 
pansions (e.g. Shmueli & Wilson, 1981; Shmueli, 
1982), based on exact moments of the structure factor 
(Wilson, 1978; Shmueli & Kaldor, 1981, 1983) and 
ideal centric and acentric p.d.f.'s (Wilson, 1949). 
More recent developments, which led to exact rep- 

* Part v: Shmueli, Rabinovich & Weiss (1990). 
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resentations of the p.d.f.'s and in many cases allow 
for feasible numerical calculations, are the Fourier 
and Fourier-Bessel series for the p.d.f.'s of IEI (e.g. 
Shmueli, Weiss, Kiefer & Wilson, 1984; Shmueli & 
Weiss, 1987, 1988). However, while the approximate 
expressions are available for all the three-dimensional 
space groups, the latter exact formulations have been 
worked out for a small number of space groups of 
low symmetry only. While it is true that deviations 
from the popular  central-limit-theorem approxima- 
tion are greatest for the lowest symmetries, the pres- 
ence of very significant deviations in space groups of 
higher symmetry has been established from an 
examination of the properties of exact moments 
(Shmueli & Wilson, 1981) as well as from recent 
simulations. These considerations suggest the utility 
of having expressions for the characteristic functions 
for all the space groups. Moreover, statistics of projec- 
tion data have been limited to the relevant moments 
of normalized intensity (Foster & Hargreaves, 1963) 
and, in a more comprehensive study, to moments of 
trigonometric structure factors (Shmueli & Kaldor, 
1983). The corresponding Fourier or Fourier-Bessel 
series for the p.d.f.'s of the plane groups have not 
been calculated. It is desirable to do so since these 
formulations can cope with departures from ideal 
behaviour that are inaccessible to treatment by the 
older approximate methods. The study of plane 
groups also appeared most useful to us as it enables 
one to discriminate between several non-centro- 
symmetric space groups with equivalent three- 
dimensional statistics by making use of projection 
data. 

The purpose of this paper is to present the results 
obtained for the characteristic functions for all the 
plane groups and the three-dimensional space groups 
except those based on the three highest cubic point 
groups. The next section summarizes the general 
expressions for the p.d.f.'s and refers the reader to 
the tables of characteristic functions for the sym- 
metries treated here. Some representative derivations 
are presented in Appendices A, B and C. 

© 1991 International Union of Crystallography 
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Results 

The normalized structure factor is given, in general, by 

E(h) = Y~ n j [~ (h )+ i rb (h ) ]=A+iB  , (1) 
J 

where s c and rt are symmetry-dependent trigonometric 
structure factors. On making the assumption that 
atomic contributions to the structure factor are 
independent, one can express the characteristic func- 
tion of E(h) as 

C(w~, o)2) = (exp [ i(wl A + to2B)]) 

=I](exp{i[w,~(h)+w2rb(h)]}) .  (2) 
t 

The average in (2) is evaluated under the assumption 
that the arguments of the trigonometric functions 
involved are uniformly distributed in the interval 
[0, 27r]. The present derivation is confined to the case 
of all the atoms being located in general positions 
and to general reflections. Anomalous-scattering 
effects are neglected and we will assume that no 
non-crystallographic symmetry affects the p.d.f.'s. 

Shmueli & Weiss (1987) have shown that the 
Fourier coefficients of the p.d.f, of ]E are just values 
of the characteristic function at points related to 
summation indices and that the p.d.f, takes the form 

u t" 

xJo['n'aJEl(u 2 + u2) I/2] (3) 

for non-centrosymmetric space groups and 

p ( l E I ) = ~  1+2 Y~ C(r,o,u)cos(~'uo, lEI) (4) 

for the centrosymmetric ones, where the transform 
variables to1 and w2 of the characteristic function have 
been replaced by their Fourier-series equivalents 7rau 
and rrc~v respectively. Symmetry-dependent numeri- 
cal coefficients are omitted from (3) and (4). The 
quantity a in (3) and (4) is the reciprocal of the 
maximum value of E and is given by 

N N 
-1 a = Y~ n i and ni =£/.~1/2, with 2 = ~ f~, 

j = l  j = i  

(5) 

where fj is an atomic scattering factor. If the Fourier 
2 2 i / 2  coefficient depends on (u + v ) rather than on u 

and v separately, it is possible to write the p.d.f, for 
non-centrosymmetric space groups as a single Four- 
ier-Bessel series rather than the double Fourier series 
(3) (Shmueli & Weiss, 1987). The Fourier-Bessel 
p.d.f, is given by 

of) 

p(lE[) = 2a2lEI ~, U.So(O~%,lEI), (6) 
u - - I  

with 
D. = [ j  z(y.) ]-, C(ay.),  (7) 

where Jr(x) is the Bessel function of the first kind, 
of the first order, % is the uth root of the equation 
Jo(x) =0 [the uth zero of Jo(x)] and C ( a y , )  is the 
value of the characteristic function corresponding to 
the uth term of the series. 

All that is needed in order to derive the Fourier or 
Fourier-Bessel p.d.f, of IEI for a given space group 
is the corresponding characteristic function, and the 
latter requires one's ability to obtain a manageable 
expression for the average in (2). The calculation of 
these averages is straightforward in most space groups 
of low symmetry (see e.g. Appendix A of Shmueli & 
Weiss, 1987) but may become somewhat involved in 
cases of higher symmetry. One class of problems that 
we tackle is of a strictly computational nature, e.g. 
how to transform a given expression into one with 
more favourable convergence properties. We illus- 
trate this in Appendix A by the derivation of the 
characteristic function for the space group P4. 
Another problem to be addressed is that of the depen- 
dence of the arguments of the trigonometric functions 
that make up the trigonometric structure factor. This 
problem occurs in most groups of the hexagonal 
family and the question is how should this depen- 
dence be treated. Appendix B illustrates this issue by 
presenting two methods for deriving the characteristic 
function for the plane group p3: a direct one and one 
obtained using the Dirac delta distribution. It appears 
that the above direct method is preferable for cases 
of low algebraic complexity [such as, for example, 
our study of the three-phase invariant (Shmueli, 
Rabinovich & Weiss, 1989)] and the 6-function 
approach is advantageous when more complex 
expressions are to be analyzed. A routine application 
of the 6 function to our work is illustrated by the 
derivation in Appendix C. 

Atomic characteristic functions for the 17 plane 
groups are given in Table 1 and those for the 206 
space groups - collected in 69 classes - are shown in 
Table 2. The present subdivision of the space groups 
is the same as that used by Shmueli & Kaldor (1981, 
1983) in their study of moments of the trigonometric 
structure factors. The functions are given in the tables 
in terms of Bessel functions or related functions 
explicitly defined in the caption to Table 1 and the 
footnote that accompanies Table 2. All of the atomic 
characteristic functions shown in Table 2 can be 
reduced to real quantities either because the 
imaginary parts do not appear in the first place or 
because they vanish upon integration. The integration 
ranges shown in the footnote to Table 2 refer to the 
(relevant) real parts of the atomic contributions only. 
This is not the case for the last four functions shown 
in Table 1. The Fourier coefficients for hexagonal 
plane-group p.d.f.'s can be calculated in terms of the 
real part of a product of complex atomic contribu- 
tions. The p.d.f.'s to be employed are chosen in 
the following manner. If the space group is 
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Table 1. Atomic characteristic functions for the 17 
plane groups 

The table shows the number ,  g, of  asymmetr ic  units in the unit 
cell o f  the plane group indicated and the atomic contr ibut ions  to 
characterist ic funct ions o f  E. 

The  atomic characterist ic funct ions for  the last four  plane groups 
in the table are given in terms of  the funct ion 

oo 
P~(a ,p )  = ~ exp ( 3 i k p ) j 3 ( a n / ) .  

k = - ~  

The atomic characterist ic funct ions are real and even, i.e. 
C(-¢.Ol , ¢o2) = C(001, - 0 2 )  = C(¢Ol , ¢o2) = C ( - W l ,  -002) and 
C(-w~) = C(w~), except those in the last four lines in the table. 
The real parts of P(w~, w 2) and P(w~) are even while the imaginary 
ones are odd. 

Atomic 
characterist ic 

Plane group(s)  g funct ion 

p I ! Jo( ton~ ) 

p2 2 Jo(2Wln , ) 

pm, pg 2 Jo( oa,,j ) 
2 cm 4 Jo(2wnj ) 

prom, pmg, pgg, p4 4 Jo2(2wt n I) 

cmm 8 J~(4¢o I nj) 
4 

p4 m, p4g 8 Jo( 2 wn i ) 

p3 3 P~(w, ,.1) 
2 p3ml ,  p31m 6 P,(w, A) 

p6 6 Pj(2w~, 7r/2) 
2 p6m 12 P,(2wl, 7r/2) 

centrosymmetric (i.e. the atomic characteristic func- 
tion depends only on a single Fourier transform vari- 
able, ¢ol), (4) is to be used. The p.d.f, o f  IEI can be 
computed from (3) for any non-centrosymmetric  
space group; however,  the more expedient  Fourier- 
Bessei series (6) can be used when the atomic charac- 
teristic funct ion depends  on to-( to~+to~)~/2 alone. 
A convenient  algori thm for the computa t ion  of  the 
required roots of  Jo(x)  is given by Shmueli  et al. 
(1984). Thus, the double  Fourier summation (3) m u s t  
be used only if the atomic characteristic function 
depends on both to and A = t a n  -~ (to,/to2). 

General izations of  the present results, in which 
effects of  dispersion and some kinds of  non-crystallo- 
graphic symmetry are accounted for can be treated 
along the lines of  the work of  Shmueli ,  Rabinovich 
& Weiss (1990). 

All of  the p.d.f.'s based on the characteristic func- 
tions shown in Table 2, and the hexagonal  ones in 
Table 1, were computed  numerical ly and are com- 
pared with the corresponding simulated distribution 
of  lE I and the p.d.f.'s based on Wilson (1949) statistics 
in the fol lowing article (Rabinovich,  Shmueli ,  Stein, 
Shashua & Weiss, 1991). It will suffice to point out 
here that all these Fourier and Fourier-Bessel  series 
p.d.f.'s converge well and display significant devi- 
ations from the ideal behaviour for many space 
groups of  higher symmetry. 

Preliminary examinat ions  of  some of  the last 24 
cubic space groups, which we have not included in 

Table 2. Atomic characteristic functions for the p.d.f. 
of E, for most three-dimensional space groups. 

The table lists the expressions for  the a tomic  characterist ic func- 
tions, cor responding  to the p.d.f, o f  E, for  all the space groups 
except  those based on the cubic point  groups 432, ~,3m and m 3 m .  
The co lumn labelled Space group(s)  gives the symbols of  space 
groups or sets o f  statistically equivalent  space groups and the 
associated point  groups;  the second column,  g, contains the number  
of  asymmetr ic  units in the unit cell for  the symmetry  indicated;  
the third column,  labelled Atomic  characterist ic funct ions lists the 
expressions for  the atomic character is t ic  functions in symbolic  
form, explicitly defined in the foo tnote  section of  the table. The  
last column,  Remarks,  lists the parities of  reflection classes, for 
which different expressions o f  the a tomic  characterist ic functions 
are obtained.  

Space group(s)  g 

Point group: I 

PI I 

Point group: T 
Pi  2 

Point groups: 2, m 

All P 2 

All C 4 

Point group: 2/m 

All P 4 
All C 8 

Point group: 222 
All P 4 

All C and 1 8 
F222 16 

Point group: ram2 

All  P 4 

All A, C and I 8 
Fmm2 16 

Fdd2 16 

16 

Point group: mmrn 

All P 8 
All C and I 16 

Fmmm 32 
Fddd 32 

32 

Point group: 4 

P4, P42 
P4* 

14 

I4~ 

Point group: 

Atomic 
characterist ic 

funct ions 

Jo(wnj) 

Jo(2wln,) 

J~(wn,) 
J2(Zwnj) 

J~(2to I nj) 
J~(4to I nj ) 

L,(to, A) (") 

L,( 2w, A) 

Li(4w, A) 

Lj(oa, O) 

L~ (2~o, 0) 
Lj(4~o, 0) 

Lj (4oJ, 0) 
t / (4w, 7r/4) 

Lj(2w,, 0) 
L,(4wl , O) 

Lj(8wl,  O) 

Lj(8w t , 0) 
L,(8w~, ~-/4) 

Li(w, O) 

Lt(to, O) 

Lj(to, ~'/4) 

Lj(2w, O) 

Li(2w, 0) 

Li(2w , rr/4) 

Remarks 

h + k + l = 2 n  

h + k + l = 2 n + l  

h + k + l = 2 n  

h + k + l = 2 n + l  

1=2n 

1 = 2 n + l  

2h + l = 2n 

2 h + l = 2 n + l  

P4 

Point group: 4 /m 

All P 
14/m 

1 4 J a  

Lj(a~, A) 

Lj(2w, A) 

L¢(201 , O) 

L~(4wl, 0) 

L,(4w I , 0) 

Lt(4wt, =/4)  

1=2n 

/ = 2 n + l  
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S p a c e  g r o u p ( s )  g 

Point group:  422 

P422, P42,2,  P4222 

and P422t2 

P4t22,* P4!2t2* 

1422 

14!22 

Point group:  4mm 
All P 8 

14mm, 14cm 16 

14!md, 14~cd 16 

16 

Table 2 (cont.) 
A t o m i c  A t o m i c  

c h a r a c t e r i s t i c  c h a r a c t e r i s t i c  
f u n c t i o n s  R e m a r k s  S p a c e  g r o u p ( s )  g f u n c t i o n s  

Point  group:  

P() 6 H(i~)(w, A) 

Point group:  6 / m  
Qt~t)(to, A) l = 2n 

P6/m 12 H(~)(2wt,  7r/2) 
Q~2)(m, A)(C) I = 2n + I P63/m ]2  H/, ' ) (2w, ,  ~r/2) 

Q~t)(2w, A) 12 H~"(2o~!, 0) 
Q~! )(2~o, A ) 2k + I = 2n 

Q~2)(2~, A ) 2k + l = 2n + 1 

O~/'(,., o) 
Q¢~' '(2w, 0) 

Qt~')(2m, 0) 2k + I = 2n 

Q(~t)(2to, rr /4)  2k + I = 2n + I 

Point groups:  42m, ~,m2 

All P 8 Qt~!)(w, A) 
I42m, l~,m2, 14c2 16 Q~t)(2to, A) 

I2~2d 16 Q~!)(2w, A) 2h+l=2n  

16 Q~f)(2w, A) 2 h + l = 2 n + l  

Point group:  4 / m m m  

All P 16 

14/mmm, 14/mcm 32 

14ffamd, 14dacd 32 

32 

Q~')(2o~,  0) 

Qt~')(4w~, 0) 

Q(~!)(4w~, 0) I = 2n 

Qt~)(4m!, rr /4)  I = 2n + 1 

./o3(,o,,,) 

j3(2w,nj) 

Point group:  3 

All P and R 3 

Point group:  

All P and R 6 

Point group:  32 

All P and R 6 Ti(w, ,1) (d~ 
Point group:  3m 

P 3 m l ,  P31m, R3m 6 T~(w, rr /2)  

P3cl, P31c, R3c 6 T~(w, ~r/2) 

Point  group:  3m 

P3ml, P31m, R3mi2 
P3cl, P31q R3c 12 

Point group:  6 

P6 

P6* 

L(,o,o) 

T/(2to,, ~r/2) 
T~(2w,, rr/2) 

T~(2w,, 0) 

H ~)(w, ~-/2) (~) 

H ')(to, ~r/2) 
H 2)(to, 0)(J ) 

H :2)(to, ~r/2) 

H ) ) ( w ,  0) 

H ))(w, 7T/2) 

H ~2)(w, 7r/2) 

H i~)(,o, ~-/2) 
H ~)(w, 0) 

P6* 

P63 

l=2n(P),  
h + k + l  

= 2n(R)  

1=2n+l(P) ,  
h + k + l  

= 2 n + l ( R )  

1=2n(P), 
h + k + l  

= 2n(R)  

l = 2 n + l ( P ) ,  
h + k + l  

= 2 n +  I (R)  

l=6n 
1=6n+l ,6n+5  
1=6n+2,6n+4 
/ = 6 n + 3  

1=3n 
l = 3 n ± l  

l=2n 
/ = 2 n + l  

Point group:  622 

P622 

P6t22* 

P6222" 

P6322 

Point group:  6ram 
P6mm 
P6 cc 

P63cm, P63mc 

~2 
12 
12 
12 /q 

~2 /~ 
12 
12 /4 
12 
12 

Remarks 

1=2n 
/ = 2 n + l  

P61 mmm 
P6/ mcc 

P6 ~/ mcm, 
P63/mmc 

Point  group:  23 
3 P23, P2t3 12 L~(w, A) 

I23, 12~3 24 L~(2w, A) 
F23 48 L~(4to, A) 

Point group:  m3 
Pro3, Pn3, Pa3 24 L)(2os!,  0) 

lm3, la] 48 L~(4to!, 0) 

Fro3 96 L3~(8w~, O) 
Fd3 96 L3(8~o~, 0) h + k + I = 2n 

96 L~(gm~, ~r/4) h + k + I =  2n + 1 

Point groups:  62m, 6m2 

P62m, P6m2 12 

P62c, P()c2 12 

12 

Point group:  6/mmm 

/.~ ( I ) l  
i ~w, A, & O) 

lYlt, t)(w, A, A, O) l = 2n 
/ ~ ( 1 ) :  tto, A + rr/2, 1 = 2 n + l  

- A  - 7r/2, 0) 

24 /q(, ')(2w!, rr/2,  rr /2,  0) 

24 /q(;' )(2¢ol, ~ ' /2,  ~ ' /2,  0) l=2n 
24 /q(/I)(2wj, 7r/2, - ~'/2, 0) 1 = 2 n +  I 

"~! 1(2tol, zr/2, zr/2, 0) 1=2n 24 H i 

24 H(~l)(2wl, 0, 0, 0) l = 2 n + l  

Definitions of atomic characteristic functions 
The definit ions of  all the symbols  used in Table 2 are summar ized  below. 
The t ransform var iables  of  the a tomic  character is t ic  function are w! for 

: 2 +  2 x 1 / 2  cent rosymmetr ic  space groups  and to ~ twt w2j , A -= arctan (wffw 2) for 
the non-cen t rosymmet r ic  ones. The fol lowing abbrevia t ions  are used in the 
subsequent  defini t ions of  the symbols :  

s.  = 2an~ sin (~ ± p ), c .  = 2an; cos (q~ ± O) and ~r± = 2an~ sin (~ ± 27r/3 + p ). 

(a) L,(a, p) = (Jo(s,)Jo(s_)),~ 

= k  ~ COS (4kp)J~(anj) 

~x~ 
4 = Jo(an i) + 2 ~ cos (4kp)J~(ani). 

k . , !  

12 /q( ')(w, 7r/2, 7r/2, 0) J 
12 lYl(,l~(w, rr/2, rr/2, 0) 1= 2n 
12 /q(ll)(to, ~r/2, - ~r/2, 0) 1 = 2 n + 1  

12 _ j  , , T r / 2 , ~ r / 2 , 0 )  l = 2 n  

12 /q~l I(to, 0, 0, 0) 1 = 2 n + 1  

:')(w, 7r/2, - 7r/2, A) ~ 
,')(w, Tr12,-~/2, A) 1 = 6 n  

,2)(w, 0, 0, A) ~h) 1 = 6 n +  1 , 6 n + 5  

,2)(o~,~'/2, rr/2, A) 1=6n+2,6n+4 
))(w, 0, 0, A) 1 = 6 n + 3  

,~)(w, 7r/2, - ~-/2, A) 1=3n 
2)(to, Tr/2, rr/2, A) l = 3 n ± l  

I)(to,~12,-Tr/2, A) l=2n 
/4~,1~(w, 0, 0, A) l = 2 n +  1 
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Table 2 (cont.) 

Definitions of atomic characteristic functions 

(b) Q(,t)(a, a) = (J2o(S+)j2(s-))~. 

(C) Q~2)(a, p) = (Jo(c+)Jo(s_)Jo(c+)Jo(c_))~. 

(d )  T~(a,p)  = ~ e x p ( 6 i k p ) J ] ( a n , )  
k=-oo 

= j6(an,)+ 2 ~ cos (6kp)Jr(anj) 
k=l 

(e) H~)(a, tz) = <Re [S~l)(g,; a, /z,  0)]),~. 

( f )  Htj2~(a, ~) = ( R e  [S(,21(V,; a, a 0)]),~. 

(g) /4~"(a, ~-l, ~i.~, , a) = <Re [S(,'~(¢; a, ,~,, p)s~t)((p; a, ,~2, -P)]),~. 

(h)  /4~2)(a, Iz , , /z2 ,  p)  = (Re [S~2)(~0; a, I t , ,  p)St~2)(q~; a, ~t 2, - p ) ] ) ¢ .  

where 

S ) ' ) ( ~ , ; a , ~ p ) =  ~ exp(3ikt~)J~(s+) 
k = -oe 

and 

oo 
c.(2), . ~j tq~,a,P~,p) = ]~ exp(3iklz)Jk(s+)Jk(cr+)Jk(tr-). 

k~-cc 

All the a tomic  character is t ic  funct ions,  der ived in this work, can be reduced 
to real quanti t ies .  The fol lowing symmetry  relat ions hold:  Cj(~ot, o)2)= 
C ; ( - o ) l ,  o)2) = Cj(o)l ,  -(°2) = C j ( - w l ,  -o)2) for the non-cen t rosymmet r ic  
groups,  for which doub le  Four ie r  series have to be computed ,  and  Cj(o)l) = 
C j ( - o ) t )  for the cen t rosymmetr ic  ones. In most,  but not all, cases, Cj(o)l ,  0) 
and Cj(0, o)2) are also equivalent .  

The averages appea r ing  in the above  summary  are, in general ,  computed  
/2 (2) (2) 

as <f(~o)). = ( 2 / ~ ' ) ~  f ( g , ) d ¢  except  H ,  and /4, which are computed  .n/3 u ' J J 
as (3/w)J~o f ( ~ )  d~,  where f ( ~ )  is any of  the a tomic funct ions indica ted  
above.  

* And  the e n a n t i o m o r p h o u s  space group.  

this paper, led to highly unwieldy expressions. Before 
considering whether their detailed study by the 
Fourier method is indeed worthwhile we decided to 
simulate the corresponding distributions of IEI and 
compare the simulations with the ideal Wilson (1949) 
p.d.f.'s. The computations were performed for a 
model asymmetric unit containing 14 C atoms and 
one U atom, i.e. for a strongly heterogeneous compo- 
sition. The results indicate that the distributions of 
I EI for most cubic space groups are insensitive to 
atomic heterogeneity. Even in those few cases where 
deviations from ideal behaviour are significant they 
are not likely to give rise to misleading indications 
of the Wilson (1949) p.d.f.'s when applied to highly 
heterogeneous cubic crystals with all the atoms in 
general positions. This is further discussed elsewhere 
(Rabinovich et al., 1991). 

This study was supported, in part, by grant no. 
88-00210 from the Binational Science Foundation 
(BSF), Jerusalem. All the computations related to this 
work were done on a Cyber 180-990 at the Tel Aviv 
University Computation Center. 

A P P E N D I X  A 

Derivation of  the characteristic function for the 
space group P4  

This derivation illustrates techniques and results used 
to derive the characteristic functions for some space 
groups of orthorhombic and tetragonal systems in 
addition to the cubic ones for which results have been 
obtained. The normalized structure factor for P4 is 
given by E = A + iB, where 

N/4  
A = 4  ~ nj cos q~j cos Aj cos /z; 

j = l  

and (A.1) 

where 

N/4  
B = 4 ~ nj sin q~j cos Aj cos/xj, 

j = l  

Aj = rr[( h - k )xj + ( h +  k)yj],  

/zj = rr[(h + k)xj  - (h - k)yj] and ~oj = 2rrlzj (A.2) 

( International Tables for  X-ray  Crystallography, 1965). 
If we make use of the assumptions outlined earlier 
the characteristic function, formally defined as 
C ( w l ,  w2)= (exp [ / (wlA+ ~2B)]),  can be written 

C(tu, A ) =  [1/(2rr)3] i ~ i d(pdh dtt 
j = l  --Tr - ~  -~" 

xexp [4injw sin (~o + A) cos A cos/z]},  

(A.3) 
2 where w=(wl+w~2) ~/2 and A= tan - ' (w i /w2) .  The 

phase A can be eliminated by a change of the ~0 
variable. If we now make use of the integral rep- 
resentation of the Bessel function Jo(x), 

Jo(x) = (1/2rr) i exp (ix sin/3) d/3 
--77" 

(Gradshteyn & Ryzhik, 1980; 8.41 l - l )  and the known 
definite integral 

i Jo(2Z cos x) cos (2nx) d x = ( - 1 ) " ~ ' J 2 ( z )  
0 

(Gradshteyn & Ryzhik, 1980; 6.681-5), we can reduce 
(A.3) to 

C ( w ) =  H (1/2~') d~Jo2(2n/o cos~)  
j = l  - ~  

= II ( 1 / 2 , 0  d Jg(2nj o sin ~) . (A.4) 
j = l  - ~  

The integral in (A.4) can be evaluated numerically 
but it is possible, and far more efficient, to convert it 
into a series which converges quickly. This can be 



S. RABINOVICH, U. SHMUELI,  Z. STEIN, R. SHASHUA AND G. H. WEISS 333 

done by means of the expansion 

Jo (zs in /3 )=  E J ] ( z / 2 )  e x p ( i k ~ ) ,  (A.5) 
k =  - o o  

which is a special case of the addition theorem for 
Bessel functions (Gradshteyn & Ryzhik, 1980; 8.531- 
3), as follows 

(1/27r) S d~Jg(2n~to sin/z) 

oc oc 

= E E J~(n, to)J,~(njto) 
k = --oc:. 1 = --cx2 

x { ( 1 / 2 r r ) _ ~  e x p [ i ( k + l ) ~ ] d t x }  

OI3 CX3 

= E g J~(njto)J~(njto)6k_t, (A.6) 
k = - o o  [ = - o o  

where 6k,-t, the Kronecker delta, equals 0 or I accord- 
ing as k # - l  or k = - l ,  respectively, with the con- 
sequence that 

o o  3 c  

c(to)= E J4(n, to)=j4(njto)+2 E J~(n~to). 
k = - o c  k - = l  

(A.7) 

Only the first few terms of the series in (A.7) are 
required for most practical purposes. An asymptotic 
approximation to the integral in (A.4) also exists 
(Stoyanov & Farrell, 1987) but its usefulness is limited 
to large values of the argument, i.e. to terms in the 
Fourier or Fourier-Bessel series with large summa- 
tion indices. We made no use of it in this study. 

APPENDIX B 

Derivation of the characteristic function for the 
plane group p3 

This derivation illustrates much of the methodology 
used in the derivations of characteristic functions for 
plane groups and space groups containing a unique 
threefold or sixfold axis. The normalized structure 
factor for p3 is given by E = A + iB, where 

N/3 3 N/3 3 
A = ~ nj ~ cos ~l, jk and B = Y~ nj ~ sin/Zig 

j = l  k = l  j = !  k = l  

(B.1) 

with 

m,  = 27r(hxj + kyj), m2 = 2rr(kxj + iyj) 

and tzj3 = 2 rr( ixj + hyj ) , 
(B.2) 

where i = - h - k (International Tables for  X-ray Crys- 
tallography, 1965). Note that only two of the /x ' s  can 
be independent and the remaining one is found from 
the relation tzj~ +/.tj2 +/xj3 = 0. 

If we make use of our earlier assumptions, the 
characteristic function can be written 

C ( w~ , to2) = (exp [ i( w i A  + to2 B) ]) (B.3) 

= [I exp inj 2 (to, COS~jk 
] 1 k = l  

+ to2 sin/z/k } / ,  (B.4) 

where use has been made of the assumption of 
independence of the atomic contributions. If we set 
to1 = to sin za and to2 = to cos A, so that tan A = tol/to2 

2 2 I / 2 ,  and to = (to,+to2) we obtain 

C(to, z l )=  [1 exp injto ~ (sin A COStXjk 
j=l k=l 

+cos A sin/Z/k)}/ (B.5) 

N/3( { ~ }) 
= I] exp in;to sin(p. jk+A) 

. =  k - 1  

N/3 
= [I Cj(to, A). (B.6) 

j =  I 

The assumption of uniform distribution of the atomic 
phase factors allows us to rewrite the average in (B.6) 
as  

Cj(to, A)= [1 / (2~ ' )  2] ~ ~ e x p { i n j t o [ s i n ( i z , + A )  
f r  - - r r  

+sin (tx2 + A ) 

+sin  (- tz~-/ .~2+ A)]} dlz, dtz2. (B.7) 

The integral in (B.7) can be computed numerically, 
but it is possible and much more efficient to convert 
it into a rapidly converging series. This can be done 
with the aid of the identity 

o o  

exp (ix sin fl) = ~ Jk(X) exp (ikfl) 
k =  - - o c  

(e.g. Gradshteyn & Ryzhik, 1980; 8.511-3), where 
Jk(X) is a Bessel function of the first kind and of 
order k. By making use of this identity we can then 
rewrite (B.7) as 

o c  o c  ~-~ 

C)(to, A)= E E E Jk(n)to)J,.(njto) 
k = - o c  m ~ - . ~ x ~  n -  o o  

x J , (n /o )  exp [ i ( k +  m + n)A] 

x[1/(2"rr) 2] S ~ e x p [ i ( k - n ) ~ , ]  
- - ' r r  - T r  

x exp [ i (m - n)tx2] dtx, d~2 (B.8) 
o c  

= ~ e x p ( 3 i k A ) J ~ ( n / o )  (B.9) 
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since the integral on the second line of (B.8) evaluates 
to 6g,6,,,n, where ~vq is the Kronecker delta (cf. Appen- 
dix A). 

An evaluation of (B.6) that preserves symmetry 
makes use of the periodic Dirac 6 distribution, i.e. 
t~h(X)=~',j~=_~t~(x--jh) (e.g. Bremermann, 1965). 
When this representation is inserted into (B.6), it is 
transformed into 

C ( w , A ) =  I-I [1/(2rr)2] i i S d/.t,d/z2d.3 
j=l -rr -~" -~" 

× 82~(/z~ +/.t2+/z3) 

 ex, s,n (,.,o, 

A most convenient implementation of the Dirac delta 
distribution, in the present context, is its Fourier- 
series representation: 

OC,. 

=(1/2~ ' )  ~ e x p [ - i k ( ~ l + ~ 2 + ~ 3 ) ]  (B.I1) 
k = - o o  

(e.g. Bremermann, 1965). If we substitute (B.11) into 
(B.10), we obtain 

C(to, A) = I] (1/2rr) exp [ - i k ~  
j = l  k = -oo.  - r r  

+ injto sin (/z + A )] d/.t . (B.12) 

The summand in (B.12) is related to the integral 
representation of a kth-order Bessel function. A 
change of variable / x ' = / x + A  leads to - i k / z =  
- i k / z '+  ikA, sin (/z + A)----sin/z' and the appearance 
of the phase factor exp (ikA). Finally, we find 

N/3 ( oo I 
C(to, A ) =  I-I ~ exp(3ikA) (1/27r) 

j = l  k = - o o  

x J exp ( - i k ~  + injto sin ~) d~ (B.13) 
--'77" 

= l~ ~ exp(3ikA)J~(nj to)  (B.14) 
J = i  k = - o o  

(e.g. Gradshteyn & Ryzhik, 1980; 8.411-1), in agree- 
ment with the result obtained by our previous method. 

A P P E N D I X  C 

Derivation of  the characteristic function for 
P6c2 with l = 2n + 1 

We next illustrate the derivation of the characteristic 
function of the p.d.f, p(A,  B), where E = A +  iB is 
the normalized structure factor, for the hexagonal 
space group P6c2, for the parity ! = 2n + 1. The corre- 

sponding real and imaginary parts of E are given by 

N/12 3 
A = - 2  ~ njsintpj Y. (s intzjk+sinAjk)  (C. 1) 

j = l  k = l  

and 
N/12 3 

B = 2  Y. nj sin ~oj ~, ( COS I.Ljk --COS Ajk ), (C.2) 
j = l  k = !  

where 
i~j ,=2rr(hxj+kyj) ,  /xj2 = 27r(kxj + iyj), 

Izj3 = 2 7r( ixj + hyj ), 

aj, = 27r(kxj + hyj), aj2= 27r(hx; + iyj), 

Aj3 = 2 ~(  ixj + kyj ) 

and ej = 27rlzj. The form of the trigonometric structure 
factor given in (C.1) and (C.2) corresponds to the 
format in the forthcoming Volume B of International 
Tables for  Crystallography (Shmueli, 1991). Each of 
these angular variables can be regarded as being 
uniformly distributed on [0, 27r], but only two of the 
tz's and two of the A's are independent since ~ tzk -= 0 
and ~ Ak--=0. The characteristic function for the 
required p.d.f., defined as a product of individual 
atomic contributions, is given by 

N/12 
C(tol ,  to2)=(exp [ i (wiA  + to2B)]) = I-I Cj(tol, to2), 

j = l  

((7.3) 

where it was assumed that the atomic contributions 
to the structure factor are independent and the averag- 
ing extends over all the angular variables after proper 
account has been taken of the dependence between 
the t.t's and ,~'s. If we change to the polar coordinate 
form to~ = to sin A and to2 = to cos A and rearrange the 
trigonometric part of (C.3) to the more convenient 
form 

3 

Y [-to~(sin/zjk + sin ,/~.jk) "3t- t o 2 ( C O S  ['£jk - - C O S  A j k ) ]  
k = l  

3 

= to E [cos  (~jk + A ) - cos (X~k - A )], 
k = l  

the atomic characteristic function in (C.3) can be 
transformed to 

G(to,, o,2) 

=[1 / (2r r ) ' ]  ~ d~ 
--'rr 

-11- - T r  -7"r - ' r r  - T r  -7"  

x a : . ( ~ ,  + i t 2 +  ~3)a :~( ;~ ,  + , ~ 2 +  x3) 

{ , 
x exp 2injto sin ~0 ~ [cos (~k + A) 

k = l  

- cos (Ak -- A ) ]~. (C.4) 
J 
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The integral (C.4) is now conveniently evaluated with 
the aid of the Fourier representation of the periodic 
6 distribution (e.g. Bremermann, 1965) 

62~(a)=(1/2rr) ~ exp(- iktz) .  (C.5) 
k = - c c  

Since the a ' s  are equivalent, and so are the /3's, we 
obtain 

Cj(wi,w2):(1/ZTr) i dcpO.Pj~j, (C.6) 
--77" 

where 

~j=[1/(2~ ' )2]  i 7 i d/~,d/~2dtx3 
• - r r  - - r r  --Tr 

× 62~-(/Zl + tz2+/z3) 

xexp[2injwsinq~ ,,,=l~ cos (/zj,, + A)] (C.7) 

= Y" (1/2rr) exp [-iktx 
k = - , ~  -77" 

+2in?o sin ~¢ cos (/z + A)] d/z} 3.- (C.8) 

The change of the variable Iz' --/z + (A + I7/2) allows 
us to rewrite this as 

)]{ 1 
?)0 = y" exp [3ik(A +7r2 
• ' k . . . .  x 2 77" 

7"r 

× f exp (-iktxt+2injw sin c sin lx') dtz'} 3, 
- - 7 7 "  

(C.9) 

which can be written, using the integral representation 
of a kth-order Bessel function Jk(x), as 

oc 

.@j= Y~ exp[3ik(A+~/2)]j3(2njwsincp) (C.10) 
k = - c e  

(e.g. Gradshteyn & Ryzhik, 1980, equation 8.411). If 
we follow the above procedure with the variable 

change A'= A - (A + ,n-/2), we obtain for the quantity 
~ j  in  ( C . 6 )  

oc 

~j = Y~ exp [-3i l (A + 7r/2)]J~(2njw sin ~o). 
I =  -- :"~c 

(c.11) 
The characteristic function for the space group con- 
sidered is therefore given by (C.3), where the atomic 
characteristic function is computed from (C.6) with 
(C.10) and (C.11). Since ~; and ~j are complex 
conjugates, the imaginary part of ~j~j vanishes, and 
because of the symmetry of the integrals involved the 
relevant entry for this space group is computed as 

, - H i  [ w , ( a + T r / e ) , - ( A + r r / 2 ) , 0 ]  

rr/2 

=2/. I Re(~j~j)d¢. 
o 
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